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Domain coexistence in nonlinear optical pattern formation

Svetlana L. Lachinova and Weiping Lu
Department of Physics, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

~Received 15 March 2001; published 17 July 2001!

We report on domain coexistence of a variety of different modes in a two-dimensional nonlinear optoelec-
tronic model. The changes of stabilities of these modes are shown to give rise to new forms of spatial and
spatiotemporal structures. The existence of these domain patterns explains some of the patterns recently
observed in an optical system with a large array optoelectronic feedback circuit.
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It is now well known that dissipative structure emerg
from nonlinear interaction and under symmetry constraint
spatially extended systems in diverse areas such as fl
chemistry, biology, and optics@1#. Most studies of pattern
formation began in the earlier years with the limiting cas
in which coherent structure appears due to a single sp
mode born from instabilities of the homogeneous ste
state and the complexity in the system evolves from the s
sequent instabilities of this mode. This mechanism is resp
sible for dissipative structures observed in some best-kn
pattern-forming systems, such as Couette-Taylor fl
Rayleigh-Bénard convection, electroconvection, and tw
level broad-area lasers. Recently, there has been a cons
able interest in pattern formations that arise from a few nu
bers of nonlinearly interacting modes or elementary patte
In this case new types of patterns have been observed,
ing from resonant interactions of these excited modes w
different wave numbers and orientations@2,3#. Flower pat-
terns and superlattice structures are such examples that
been reported by many authors@4–9#. Another class of pat-
tern formation for this case is domain coexistence of th
modes, that is, patterns of different symmetry and/or diff
ent wave numbers can coexist in different domains of
available space@10,11#. The boundaries of the domains a
commonly referred to as domain walls@12#. The simplest
case of domain coexistence corresponds to bistable situa
involving two modes, such as rolls and hexagons
Rayleign-Bénard convection@13# and in optical systems
@14#. Complex domain structures have been more rece
observed in experiments@15–17#.

In this article we present an investigation of domain c
existence of a variety of different elementary patterns in
two-dimensional optical system with periodic nonlineari
We show the coexistence of interacting modes in the par
eter regions of unstable homogeneous steady state solu
of the system. The changes of stabilities of these mode
the variations of the input light intensity are found to gi
rise to a sequence of spatial bifurcations, from which n
forms of spatial structures develop. The predicted dom
patterns in the theory can explain some of the spatial st
tures observed in the experiment@18#.

A broad-area nonlinear optoelectronic feedback sys
has recently been shown to display a kaleidoscope of
terns@18#. The experimental system under investigation i
generic~transversely! two-dimensional hybrid optoelectroni
device comprising a phase spatial light modulator~SLM!
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coupled with a photo-detector array through a combined
tical and electronic feedback loop. A schematic is shown
Fig. 1. The phase of the coherent input wave is modulate
it transmits through the SLM, the phase modulations in
transverse space being linearly proportional to the con
intensity of the SLM in local regions. The input wave the
experiences a free propagation, and subsequently nonlin
ity and spatial spectral filtering through the electronic sig
processing before it is fed back to the SLM. The optical a
electronic interfacing is provided by the photoarray in t
feedback loop. Pattern formations have been observed in
periments with a variety of nonlinearities for which the ele
tronic signal processor has been programmed, ranging f
cubic, unimodal, to bimodal. Interestingly, different forms
nonlinearities have been shown to exhibit many comm
features in pattern formations. In this work we choose
phase modulation in the signal processor to be cosine t
similar to the bimodal-type nonlinearity in the experimen
From a theoretical point of view, the experimental syste
can be accurately modeled by a set of coupled partial dif
ential equations. The dynamics of the phase variationsu(r ,t)
in the nonlinear system is described by the following eq
tion,

]u~r ,t !

]t
1u~r ,t !5D¹'

2 u~r ,t !1KwFB~r ,t !, ~1!

wherer is the radius vector in the transverse plane,t is the
time coordinate normalized to the characteristic relaxat
time of the nonlinearityt0 , D is the diffusion coefficient,¹'

2

the transverse Laplacian, andK the feedback gain coefficient
The feedback signalwFB , which is given as

FIG. 1. A schematic of the nonlinear optoelectronic feedba
system.
©2001 The American Physical Society07-1
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wFB~r ,t !5E @12cos~2pI d!#h~r2r 8!d2r 8, ~2!

is a convolution integral of cosine function ofI d(r ,t) and
h(r ). Here I d(r ,t)5uA(r ,z5L,t)u2 is the intensity distribu-
tion of the light wave after a free propagation of lengthL and
h a low-pass spatial filter in the super-Gaussian shape
the cutoff frequencyqcut and powera. The Fourier trans-
form of h is thereforeH(q)5exp@2(uqu/qcut)

a#. The free
propagation of the light betweenz50, andz5L along the
longitudinal axis is described by the equation

22ik0

]A~r ,z,t !

]z
5¹'

2 A~r ,z,t ! ~3!

and the boundary conditionA(r ,z50,t)5A0 exp@iu(r ,t)#,
whereA0 is the amplitude of the incident optical wave an
k0 is its wave number.

Equations~1!–~3! admit a spatially homogeneous stea
state solutionu05K@12cos(2pId)# and I d5I 0[uA0u2, as
shown in Fig. 2~a!. The linear stability analysis of thes
equations gives the characteristic equation

l52~11Dq2!12K sin~2pI 0!2pI 0 sin~q2/q0
2!

3exp@2~ uqu/qcut!
a#, ~4!

whereq is the perturbation wave number andq05A2k0 /L.
l50 marks a bifurcation point from which the homog
neous steady state looses its stability and gives rise to s
pattern formation. The condition]l/]q50 for l>0 from
the above equation determines the wave numbers that c
spond to the maximum gain modes at and above the thr
old, referred to as the critical wave numberqc . qc is depen-
dent on the input wave intensityI 0 and other parameters o
the system. However, in the absence of diffusion, i.e.,D
50, qc that is given by the transcendental equati
tan(qc

2/q0
2)52qcut

a /aqc
a22 does not depend onI 0. For the

parameters given in Fig. 2,qc'A0.336pq0. This is one of
the basic wave numbers observed throughout in our sim

FIG. 2. ~a! Homogeneous steady state solution, solid and das
segments correspond to stable and unstable solutions, respec
~b! Instability island; areas surrounded by dotted, thin, and th
solid loops correspond to three different cases:D50 and without
spatial frequency filtering,D51/q0

2 and without spectral filtering,
and D50 and with spectral filteringqcut50.735Apq0 , a58,
respectively. Thexy arrangement in the bifurcation plot in~b! pro-
vides a better visual relation to~a!. The feedback gain coefficien
K520.5p is consistent with experimental arrangement.
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tions detailed below. In the absence of both diffusion a
filtering, qc has a simpler form ofA(1/21n)pq0 , n
50,1,2, . . . . As seen from Eq.~4!, l is cyclic both in the
intensity I 0 and q2. This gives a two-dimensional array o
instability islands in the (I 0 ,q2) space. Figure 2~b! gives the
first four instability islands for three different parameter se
The areas of the islands are the largest in the absence of
diffusion and spatial filtering. Since the both effects provi
transverse spatial coupling in the optical/electric waves
the system, we find that, once the frequency cutoff is pres
the diffusion does not qualitatively alter the dynamics of t
system. For simplicity,D is set to 0 in the following simu-
lations. The low-pass spatial filtering ensures that only fi
instability islands in theq direction join the dynamical inter-
actions. As a result, instability occurs only in the regions
the steady state solutionu0 where ]u/]I 0.0, that is the
areas marked by the dashed lines in Fig. 2~a!.

To investigate optical pattern formations in the system,
have focused on the parameter region 0.4,I 0,1.1, which
covers the whole unstable region in the first cycle ofu0(I 0)
and small areas on both sides of this region. We numeric
integrated Eqs.~1!–~3! with initial conditions of homoge-
neous steady states with random noise. The simulation
sults, as given in Fig. 3 upper row, show a variety of spa
structures evolving from the homogeneous steady states
us describe them in detail. WhenI 0 is just below the first
bifurcation point, localized states of random spatial distrib
tions emerge from sufficiently strong initial noise perturb
tions @trace ~a!#. Once I 0 enters the unstable region, brigh
hexagonal clusters together with some isolated spots are
served @trace ~b!#. On increasingI 0, stripes are formed
through connecting the neighboring bright spots@trace~c!#.
The lengths of the stripes are short initially but increase w
the increase ofI 0, as more and more spots are connected i
the stripes. The stripes eventually dominate the locali
states as more spots join stripes@trace ~d!#. The stripes are
found to be randomly orientated, reflecting the fact of t
randomness of their initiations. On further increasingI 0
forms a new type of pattern, which comprises negative h
agonal elements each centered by a bright spot@trace ~e!
middle area#. We refer to them as mosaics; somewhat simi
to hexagonal superlattice in a viscoelastic liquid@7#. The
mosaic elements are showed to form through curving stri
surrounding a localized state. With the increase ofI 0 from
this value, localized states die out whereas clusters of ne
tive hexagon form, giving rise to netlike patterns@trace~f!#.
As I 0 moves further right, domains of perpendicular lin
emerge from the seemingly irregular nets@trace ~g!#. The
domain boundaries are formed by defects, such as impe
squares and pentagons. WhenI 0 is eventually increased clos
to the second bifurcation, negative hexagons disappear
are replaced by a triangle type of pattern@trace~h!#. Beyond
this point formations of disordered negative localized sta
or black holes, are observed.

We find that all the above patterns are stable in the se
that the structures of these patterns do not change qua
tively with time. In general these patterns are formed af
one thousand of the characteristic relaxation time from a
of given initial conditions. After this period, some of thes

d
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k
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FIG. 3. Domain coexistence of a variety of elementary patterns, obtained by integrating Eqs.~1!–~3! with initial conditions of homo-
geneous steady states superposed by random noise. Top row: traces~a!–~h! show a consequence of spatial structures on increasingI 0. Middle
row: the regions of stable elementary patterns inI 0 axis; the area within the two solid vertical lines corresponds to linearly unstable st
state solution. Bottom row: the spatial structures of the elementary patterns. The parameters used areD50, qcut50.735Apq0 , a58, and
K520.5p.
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patterns@traces ~a!, ~b!, ~f!, ~g!, and ~h!# are completely
static, confirmed by measuring the difference between
frames at different times, whereas the others reach dynam
balance, that is, the elements of the patterns may be slig
wobbling in time but overall structure remains unchang
For the latter case, simulations of 50 000t0 have been per-
formed to ensure the patterns observed are not transient
note that the above observed long transient period for
pattern formation from noisy initial conditions is due to th
competition nature of the coexisting elementary patterns
discussed below. This period reduces to a few hundredt0 or
less when the final spatial structure comprises only one
ment, such as rolls or hexagons, for the parameters clos
the threshold for pattern formation. All the simulations abo
have been carried out with grid points 2563256, the results
being confirmed by the grid points 5123512. Furthermore,
the size of the area in the transverse space is adjusted
optimal simulation results.

How can we explain these irregular and sometimes co
plex patterns? The presence of clusters of some well-kn
basic structures has led us to the idea that these patterns
be decomposed into some elementary components or mo
Our first task is therefore to show the existence of vario
elementary patterns in the system. To do so, we have in
simulation chosen initial conditions that comprise the wa
numbers and symmetries of modes obtained from the lin
stability analysis and power spectra of the patterns obser
Figure 3 middle row gives the parameter regions for all
elementary patterns numerically observed: stripes, pos
and negative hexagons, mosaics, square lattices, sup
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tices, and square dots. Their corresponding spatial struct
are shown in the bottom row of this figure. Different stru
tures are found to coexist in most of the parameter regi
investigated due to the multistability of the solutions a
their appearance depends on the choice of the initial co
tions. The parameter regions for these regular spatial st
tures were established through a sequence of simulation
increasing~or decreasing! I 0 in small steps, with the las
outputs superposed by small noise being used as the cu
initial conditions.

We find that despite of the diversity of the elementa
patterns observed, there are only two basic wave num
involved in these patterns. The first,q1, is the critical wave
numberqc at the instability threshold~as discussed earlier
qc is independent onI 0 for the parameter set used here!. It
corresponds to the stripes 1 in the Fig. 3 middle row and
longer than the second,q2, the wave number of the stripes
~the ratio being 7:6, only stripes 1 is displayed!. Both the
positive and negative hexagons have the same wave num
as q1, whereas the square lattice is based on theq2. The
latter, in fact, comprisesq2 in two perpendicular directions
q2,1 and q2,2, and the linear combinationsq2,16q2,2, as
shown in the spectral wave vector diagram in Fig. 4~a!. Here,
the second subscript indicates the different directions of
wave vector. The mosaic pattern is made of the both w
numbers,q1 andq2. Figure 4~b! shows that the mosaics con
sist of two positive hexagons of these numbers, the dir
tions being orientated 30 ° with each other. We note th
unlike the 12-fold quasiperiodic structures@2,19#, which ex-
7-3
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SVETLANA L. LACHINOVA AND WEIPING LU PHYSICAL REVIEW E 64 026207
ist in the presence of harmonics of one fundamental unst
mode, the hexagonal families in the mosaics we observe
coupled through the subharmonicq2,15q1,1/22q1,3/2 @Fig.
4~b!#. The interaction through harmonics is disabled due
the filtering in the feedback. The superlattices are shown
comprise two square lattices, one with wave vectors ofq2,1,
q2,2, and the other with (q2,16q2,2)/2. They are orientated
45 ° with each other@Fig. 4~c!# so the combination displays
triangle form. Both mosaic and superlattices patterns are
amples of resonant interaction of modes with different val
of wave numbers. We note that for the parameters we
the amplitude equations to the fifth order in the week per
bation expansion are not sufficient for describing these re
lar spatial structures. This makes bifurcation analysis cu
bersome.

The patterns in Fig. 3 upper row can now be clearly e
plained as domain coexistence of two or more of these
ementary patterns. Trace~b! is the coexistence of hexagon
clusters with randomly distributed localized states, wher
traces~c! and~d! is that of localized states and stripes. Tra
~e! is made of domains of localized states, stripes, and
saics while trace~f! comprises negative hexagons and squ
lattices. Finally, the spatial structure of trace~g! and~h! can
be explained by the presence, with different weights,
negative hexagons, square and superlattices, the latte
coming dominate on further increasingI 0. The parameter
region for stable superlattices is narrow and is in the a

FIG. 4. ~a!–~c! are the power spectra~left column! and wave
vector diagrams~right column! of the square lattice, mosaic, an
superlattice, respectively. The amplitudes of the wave vectors on
right column are increased by a factor of 2 to show more clea
their interactions.
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where the homogeneous steady states are stable. This s
ture can be observed from destabilized square lattices
increasingI 0. As we have already mentioned above, all t
elementary patterns in the given regions are stable since
are robust to modest amplitude noise perturbations. Beca
of this, they can be formed even if the initial conditions us
in the simulation deviate slightly from the elementary p
terns. However, the degree of tolerance to the deviations
ies with I 0 so that one pattern is usually more robust th
others for a particular valueI 0 and the robustness chang
with the changes ofI 0. This explains why one pattern ca
dominate others in their domain coexistence. Specifically,
example, the noise level required to destabilize the posi
hexagonal solution is higher than that needed for destab
ing the solution of the square dots. Moreover, when the
tial conditions deviate from the exact solutions of these t
elementary patterns, the convergence rate to the forme
found to be faster than that to the latter. This can explain w
the square dots are not present in domain coexistence. T
are observed only when the positive hexagons are des
lized on decreasingI 0 passing through the first bifurcatio
point. We note that the elementary components identified
the system are by no means complete but they are suffic
to explain the observed complex patterns. Finally, we h
further investigated the effect of the feedback coefficienK
on the domain coexistence. We establish that the numbe
possible elementary patterns decreases on decreasing th
ues ofK. WhenK is reduced ten times, for example, coe
istence of stripes and hexagons are the only patterns obta
in the first cycle ofu0(I 0) @20#.

The above simulation and analysis can explain some
the patterns observed in the optical experiment with op
electronic feedback loop. The experimental setup and exp
mental results are given in Ref.@18#. The system is well
described by our model for the bimodal nonlinearity. Figu
5 comprises two of the observed patterns in the experim
provided by M. A. Vorontsov. Figure 5~a! shows the experi-
mental evidence of domain coexistence of localized sta
with stripes. The defected square lattices in Fig. 5~b! can be
explained by the coexisting square and superlattices. M
over, domain coexistence has also been predicted in
theory, as observed in the experiment, using other type
nonlinearities, such as Gaussian, Kerr, and step-wise fu
tions.

Most useful discussions with Dr. M. A. Vorontsov ar
gratefully acknowledged. This work was supported
EPSRC Research Grant No. Gr/M32573 and the U.S. Ar
Grant No. R&D8938-PH-01.
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FIG. 5. Domain coexistence observed in the experiment.
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