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Domain coexistence in nonlinear optical pattern formation
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We report on domain coexistence of a variety of different modes in a two-dimensional nonlinear optoelec-
tronic model. The changes of stabilities of these modes are shown to give rise to new forms of spatial and
spatiotemporal structures. The existence of these domain patterns explains some of the patterns recently
observed in an optical system with a large array optoelectronic feedback circuit.
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It is now well known that dissipative structure emergescoupled with a photo-detector array through a combined op-
from nonlinear interaction and under symmetry constraints irtical and electronic feedback loop. A schematic is shown in
spatially extended systems in diverse areas such as fluiffig. 1. The phase of the coherent input wave is modulated as
chemistry, biology, and opticEl]. Most studies of pattern it transmits through the SLM, the phase modulations in the
formation began in the earlier years with the limiting cases{ransverse space being linearly proportional to the control
in which coherent structure appears due to a single spatidhtensity of the SLM in local regions. The input wave then
mode born from instabilities of the homogeneous steadgXPeriences a free propagation, and subsequently nonlinear-
state and the complexity in the system evolves from the subly and spatial spectral filtering through the electronic signal
sequent instabilities of this mode. This mechanism is resporrocessing before it is fed back to the SLM. The optical and
sible for dissipative structures observed in some best-knowflectronic interfacing is provided by the photoarray in the
pattern-forming systems, such as Couette-Taylor flowfeedback loop. Pattern formations have been observed in ex-
Rayleigh-Bmard convection, electroconvection, and two- Periments with a variety of nonlinearities for which the elec-
level broad-area lasers. Recently, there has been a considéienic signal processor has been programmed, ranging from
able interest in pattern formations that arise from a few numecubic, unimodal, to bimodal. Interestingly, different forms of
bers of nonlinearly interacting modes or elementary patterndlonlinearities have been shown to exhibit many common
In this case new types of patterns have been observed, ariatures in pattern formations. In this work we choose the
ing from resonant interactions of these excited modes wittPhase modulation in the signal processor to be cosine type,
different wave numbers and orientatiofs3]. Flower pat- similar to the bimodal-type nonlinearity in the experiment.
terns and superlattice structures are such examples that halveom a theoretical point of view, the experimental system
been reported by many authd#—9]. Another class of pat- can be accurately modeled by a set of coupled partial differ-
tern formation for this case is domain coexistence of thes@ntial equations. The dynamics of the phase variatirnst)
modes, that is, patterns of different symmetry and/or differin the nonlinear system is described by the following equa-
ent wave numbers can coexist in different domains of thdlon,
available spac§10,11]. The boundaries of the domains are
commonly referred to as domain wall§2]. The simp!est _ au(r,t) +u(r,t)=DVfu(r,t)JerFB(r,t), 1)
case of domain coexistence corresponds to bistable situations at
involving two modes, such as rolls and hexagons in
Rayleign-Bmard convection[13] and in optical systems Wherer is the radius vector in the transverse plane, the
[14]. Complex domain structures have been more recentl§ime coordinate normalized to the characteristic relaxation
observed in experimenfd5-17. time of the nonlinearityrg, D is the diffusion coefficienfvf

In this article we present an investigation of domain co-the transverse Laplacian, akdhe feedback gain coefficient.
existence of a variety of different elementary patterns in arhe feedback signakg, which is given as
two-dimensional optical system with periodic nonlinearity.

We show the coexistence of interacting modes in the param- Spatial light Photoarray

eter regions of unstable homogeneous steady state solutions modulator

of the system. The changes of stabilities of these modes on
the variations of the input light intensity are found to give Iput
rise to a sequence of spatial bifurcations, from which new wave

forms of spatial structures develop. The predicted domain
patterns in the theory can explain some of the spatial struc-
tures observed in the experimdiig].

A,e™ Diffraction =

z=0 z=L

) . Wrp -
A broad-area nonlinear optoelectronic feedback system E‘:&:‘;Tw I,
has recently been shown to display a kaleidoscope of pat- processing

terns[18]. The experimental system under investigation is a
generic(transverselytwo-dimensional hybrid optoelectronic FIG. 1. A schematic of the nonlinear optoelectronic feedback
device comprising a phase spatial light modulatSt.M) system.
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0.0 A e tions detailed below. In the absence of both diffusion and
[ H (a),’ Ezi IR N filtering, q. has a simpler form of\(1/2+n)mqy, n
_;‘4_ 'l II ‘101“2 0} =0,1,2 ... . Asseen from Eq(4), \ is cyclic both in the

' ] ! T e intensity |, and g2. This gives a two-dimensional array of
0.6f ;' ’: 08} instability islands in thel(;,q%) space. Figure (®) gives the
08k ! ! 04} first four instability islands for three different parameter sets.
Lo ! ! 00 LA The areas of the islands are the largest in the absence of both

00 05 10 2.0 00 05 10 2.0 diffusion and spatial filtering. Since the both effects provide
transverse spatial coupling in the optical/electric waves in
FIG. 2. (a) Homogeneous steady state solution, solid and dashethe system, we find that, once the frequency cutoff is present,
segments correspond to stable and unstable solutions, respectivelpe diffusion does not qualitatively alter the dynamics of the
(b) Instability island; areas surrounded by dotted, thin, and thicksystem. For simplicityD is set to O in the following simu-
solid loops correspond to three different cades:0 and without lations. The low-pass spatial filtering ensures that only first
spatial frequency filteringD =1/g3 and without spectral filtering, instability islands in they direction join the dynamical inter-
and D=0 and with spectral filteringy.,,=0.735/7q,, «=8, actions. As a result, instability occurs only in the regions of
respectively. Thexy arrangement in the bifurcation plot ib) pro-  the steady state solution, where du/dl,>0, that is the
vides a better visual relation t@). The feedback gain coefficient areas marked by the dashed lines in Fig).2
K= —0.57 is consistent with experimental arrangement. To investigate optical pattern formations in the system, we
have focused on the parameter region<0l4<<1.1, which
covers the whole unstable region in the first cycleugfl
WFB(r’t):J [1-cos2mlq)]h(r—r")d?r’, @ and small areas on both sideg of this region. \/)\//e nu@rcng)rically
integrated Eqs(1)—(3) with initial conditions of homoge-
is a convolution integral of cosine function of(r,t) and neous steady states with random noise. The simulation re-
h(r). Herel4(r,t)=|A(r,z=L,t)|? is the intensity distribu- sults, as given in Fig. 3 upper row, show a variety of spatial
tion of the light wave after a free propagation of lenggtand  structures evolving from the homogeneous steady states. Let
h a low-pass spatial filter in the super-Gaussian shape withs describe them in detail. Whdyg is just below the first
the cutoff frequencyq.,: and powera. The Fourier trans- bifurcation point, localized states of random spatial distribu-
form of h is thereforeH(q) =exd —(|q//gcu)*]. The free tions emerge from sufficiently strong initial noise perturba-
propagation of the light between=0, andz=L along the tions[trace(a)]. Oncel, enters the unstable region, bright
longitudinal axis is described by the equation hexagonal clusters together with some isolated spots are ob-
served [trace (b)]. On increasingl,, stripes are formed
through connecting the neighboring bright spftace (c)].
The lengths of the stripes are short initially but increase with
the increase oy, as more and more spots are connected into
and the boundary conditiod\(r,z=0t)=A,exdiu(r,t)], the stripes. The stripes eventually dominate the localized
whereA, is the amplitude of the incident optical wave and States as more spots join stripigsace (d)]. The stripes are
ko is its wave number. found to be randomly orientated, reflecting the fact of the
Equations(1)—(3) admit a spatially homogeneous steadyrandomness of their initiations. On further increasihg
state solutionuy=K[1—cos(2rly)] and l4=1,=|Ay|?, as forms a new type of pattern, which comprises negative hex-
shown in Fig. 2a). The linear stability analysis of these agonal elements each centered by a bright $pace (e)

JdA(r,z,t)

—2iko—— =V2A(r,z,t) 3

equations gives the characteristic equation middle ared We refer to them as mosaics; somewhat similar
to hexagonal superlattice in a viscoelastic liqyiidd. The
A=—(1+Dq? + 2K sin(2ml )2l sin(q?/q3) mosaic elements are showed to form through curving stripes
surrounding a localized state. With the increasd pfrom
xexd —(|al/dcu) ], (4 this value, localized states die out whereas clusters of nega-

tive hexagon form, giving rise to netlike patteffigace(f)].
whereq is the perturbation wave number agg= V2ko/L.  As |, moves further right, domains of perpendicular lines
A=0 marks a bifurcation pOint from which the homoge- emerge from the Seeming|y irregu|ar nétsace (g)] The
neous steady state looses its stability and gives rise to statifomain boundaries are formed by defects, such as imperfect
pattern formation. The conditioiN/dq=0 for A=0 from  squares and pentagons. WHgris eventually increased close
the above equation determines the wave numbers that corrgy the second bifurcation, negative hexagons disappear and
spond to the maximum gain modes at and above the threshze replaced by a triangle type of pattétrace(h)]. Beyond
old, referred to as the critical wave numlzgr. d is depen-  thjs point formations of disordered negative localized states,
dent on the input wave intensity, and other parameters of or plack holes, are observed.
the system. However, in the absence of diffusion, i., We find that all the above patterns are stable in the sense
=0, ¢ that is given by the transcendental equationthat the structures of these patterns do not change qualita-
tan(qﬁ/qé)=2q§m/aqf§’2 does not depend oh,. For the tively with time. In general these patterns are formed after
parameters given in Fig. 2j.~/0.336mqg. This is one of one thousand of the characteristic relaxation time from a set
the basic wave numbers observed throughout in our simulaf given initial conditions. After this period, some of these
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FIG. 3. Domain coexistence of a variety of elementary patterns, obtained by integratinglEg8) with initial conditions of homo-
geneous steady states superposed by random noise. Top row(&ag¢hsshow a consequence of spatial structures on incredgimgiddle
row: the regions of stable elementary patternggimxis; the area within the two solid vertical lines corresponds to linearly unstable steady
state solution. Bottom row: the spatial structures of the elementary patterns. The parameters Dse6 agg = 0.735/7q,, «=8, and
K=—0.57.

patterns[traces (a), (b), (f), (g), and (h)] are completely tices, and square dots. Their corresponding spatial structures
static, confirmed by measuring the difference between thare shown in the bottom row of this figure. Different struc-
frames at different times, whereas the others reach dynamicalres are found to coexist in most of the parameter regions
balance, that is, the elements of the patterns may be slightiyivestigated due to the multistability of the solutions and
wobbling in time but overall structure remains unchangediheir appearance depends on the choice of the initial condi-
For the latter case, simulations of 50 Ggthave been per- tions. The parameter regions for these regular spatial struc-
formed to ensure the patterns observed are not transient. Wgres were established through a sequence of simulations on
note that the above observed long transient period for th?ncreasing(or decreasingl, in small steps, with the last

pattern _fprmation from noisy in_itigl conditions is due to the outputs superposed by small noise being used as the current
competition nature of the coexisting elementary patterns, asii-| conditions

discussed below. This period reduces 1o a few hundgear We find that despite of the diversity of the elementary

less when the final spatial structure comprises only one el Jatterns observed, there are only two basic wave numbers
ment, such as rolls or hexagons, for the parameters close [0

the threshold for pattern formation. All the simulations abovemvowed in these 'patter'n S. The first;, is the critical wave
have been carried out with grid points 25856, the results nur-nb-erqC at the instability thresholdas discussed earlier,
being confirmed by the grid points 5%¥%12. Furthermore, Yc 'S independent orholfor the. parameter set used hertt )
the size of the area in the transverse space is adjusted f6PTTeSPonds to the stripes 1 in the Fig. 3 middle row and is
optimal simulation results. longer t_han t_he secondy, the wave n_umb_er of the stripes 2
How can we explain these irregular and sometimes com(the ratio being 7:6, only stripes 1 is displaye@oth the
plex patterns? The presence of clusters of some well-knowRositive and negative hexagons have the same wave number
basic structures has led us to the idea that these patterns magdi, whereas the square lattice is based ondheThe
be decomposed into some elementary components or moddatter, in fact, compriseg, in two perpendicular directions,
Our first task is therefore to show the existence of various),; and g, and the linear combinationg,*=0,,, as
elementary patterns in the system. To do so, we have in owhown in the spectral wave vector diagram in Fi@g)4Here,
simulation chosen initial conditions that comprise the wavethe second subscript indicates the different directions of the
numbers and symmetries of modes obtained from the lineavave vector. The mosaic pattern is made of the both wave
stability analysis and power spectra of the patterns observedumbersg; andq,. Figure 4b) shows that the mosaics con-
Figure 3 middle row gives the parameter regions for all thesist of two positive hexagons of these numbers, the direc-
elementary patterns numerically observed: stripes, positivdons being orientated 30° with each other. We note that,
and negative hexagons, mosaics, square lattices, superlatlike the 12-fold quasiperiodic structurf& 19|, which ex-
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(a)

FIG. 5. Domain coexistence observed in the experiment.

where the homogeneous steady states are stable. This struc-
ture can be observed from destabilized square lattices on
increasingl,. As we have already mentioned above, all the
elementary patterns in the given regions are stable since they
are robust to modest amplitude noise perturbations. Because
of this, they can be formed even if the initial conditions used
in the simulation deviate slightly from the elementary pat-
terns. However, the degree of tolerance to the deviations var-
ies with I, so that one pattern is usually more robust than
others for a particular valug, and the robustness changes
with the changes of,. This explains why one pattern can
dominate others in their domain coexistence. Specifically, for
example, the noise level required to destabilize the positive
hexagonal solution is higher than that needed for destabiliz-
ing the solution of the square dots. Moreover, when the ini-
FIG. 4. (a)—(c) are the power spectrdeft column and wave tial conditions deviate from the exact solutions of these two
vector diagramgright column of the square lattice, mosaic, and elementary patterns, the convergence rate to the former is
superlattice, respectively. The amplitudes of the wave vectors on thipund to be faster than that to the latter. This can explain why
right column are increased by a factor of 2 to show more clearlythe square dots are not present in domain coexistence. They
their interactions. are observed only when the positive hexagons are destabi-
lized on decreasingl, passing through the first bifurcation

ist in the presence of harmonics of one fundamental unstabl oint. We note that the elementary components identified in

mode, the hexagonal families in the mosaics we observe arI e system are by no means complete but th_ey are sufficient
coupled through the subharmonig ;=g 1/2— gy 42 [Fig. to explain the observed complex patterns. Finally, we have

. : St further investigated the effect of the feedback coefficiént
A(b)]. The interaction through harmonics is disabled due t n the domain coexistence. We establish that the number of

the filtering in the feedback. The superlattices are shown t ossible elementary patterns decreases on decreasing the val-
comprise two square lattices, one with wave vectorg.gf, P y p . 9
' ues ofK. WhenK is reduced ten times, for example, coex-

; N ;
922 and the other with 1+ g, 2)/2. They are orientated istence of stripes and hexagons are the only patterns obtained
45 ° with each othefFig. 4(c)] so the combination displays a in the first cycle ofug(lo) [20]

triangle form. Both mosaic and superlattices patterns are ex- The abovye simul(;tign and analvsis can exolain some of
amples of resonant interaction of modes with different value§he patterns observed in the opticyal experime?nt with opto-

of wave numbers. We note that for the parameters we usg, ) - .
. : ' : €lectronic feedback loop. The experimental setup and experi-

the amplitude equations to the fifth order in the week pertur-mental results are given in Refi8]. The system is well

bation expansion are not sufficient for describing these regus 9 ) Y

u . . - . .
lar spatial structures. This makes bifurcation analysis cum(—jescrIbGd by our model for the bimodal nonlinearity. Figure

bersome. 5 comprises two of the observed patterns in the experiment,

The patterns in Fig. 3 upper row can now be clearly eX_provided by M. A. Vorontsov. Figure(8) shows the experi-

. : . mental evidence of domain coexistence of localized states
plained as domain coexistence of two or more of these el-

: . with stripes. The defected square lattices in Figp) ©an be
ementary patterns. Tra¢b) is the coexistence of hexagonal wolained by the coexisting square and superlattices. More-
clusters with randomly distributed localized states, whereagvgr domaiyn coexistencegha?s also beenp redicted' in our
traces(c) and(d) is that of localized states and stripes. Tracetheo’r as observed in the experiment usinp other tvpes of
(e) is made of domains of localized states, stripes, and mo- 1y, as P ' 9 P

. . . . nonlinearities, such as Gaussian, Kerr, and step-wise func-
saics while tracéf) comprises negative hexagons and square. o
lattices. Finally, the spatial structure of tra@g and(h) can '
be explained by the presence, with different weights, of Most useful discussions with Dr. M. A. Vorontsov are
negative hexagons, square and superlattices, the latter bgratefully acknowledged. This work was supported by
coming dominate on further increasirlg. The parameter EPSRC Research Grant No. Gr/M32573 and the U.S. Army
region for stable superlattices is narrow and is in the are&rant No. R&D8938-PH-01.
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